Adversarial Attacks: Unterschied zwischen den Versionen
Aus exmediawiki
C.heck (Diskussion | Beiträge) |
C.heck (Diskussion | Beiträge) |
||
(9 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
+ | Blog von Francis Hunger und Flupke mit schönen beispielen...: http://adversarial.io/blog/allgemein/ | ||
+ | |||
+ | https://github.com/shangtse/robust-physical-attack | ||
+ | |||
+ | https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modifications-can-fool-machine-learning-algorithms | ||
+ | |||
+ | https://github.com/ifding/adversarial-examples/blob/master/notebooks/adversarial.ipynb | ||
+ | |||
+ | https://arxiv.org/pdf/1712.09665.pdf | ||
+ | |||
+ | https://github.com/zentralwerkstatt/adversarial/blob/master/adversarial.ipynb | ||
+ | |||
+ | https://christophm.github.io/interpretable-ml-book/adversarial.html | ||
+ | |||
+ | https://b-ok.cc/book/5260920/fee7e3 < book: Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery | ||
+ | |||
+ | |||
+ | ---- | ||
+ | https://towardsdatascience.com/perhaps-the-simplest-introduction-of-adversarial-examples-ever-c0839a759b8d | ||
+ | --- | ||
+ | * A Complete List of All (arXiv) Adversarial Example Papers https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html | ||
* Praxis-Beispiele: https://boingboing.net/tag/adversarial-examples | * Praxis-Beispiele: https://boingboing.net/tag/adversarial-examples | ||
* https://bdtechtalks.com/2018/12/27/deep-learning-adversarial-attacks-ai-malware/ | * https://bdtechtalks.com/2018/12/27/deep-learning-adversarial-attacks-ai-malware/ | ||
Zeile 7: | Zeile 28: | ||
* https://en.wikipedia.org/wiki/Deep_learning#Cyberthreat | * https://en.wikipedia.org/wiki/Deep_learning#Cyberthreat | ||
[[File:Adv-attack.png|800]] | [[File:Adv-attack.png|800]] | ||
+ | |||
+ | =notes= | ||
+ | https://github.com/tensorflow/cleverhans | ||
=WHITE BOX ATTACKS= | =WHITE BOX ATTACKS= | ||
* https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/ | * https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/ | ||
Zeile 18: | Zeile 42: | ||
===Fast Gradient Sign Method(FGSM)=== | ===Fast Gradient Sign Method(FGSM)=== | ||
FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack). | FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack). | ||
+ | * https://www.tensorflow.org/beta/tutorials/generative/adversarial_fgsm | ||
+ | * https://arxiv.org/pdf/1412.6572.pdf | ||
+ | ** https://github.com/soumyac1999/FGSM-Keras | ||
===Basic Iterative Method=== | ===Basic Iterative Method=== | ||
Zeile 68: | Zeile 95: | ||
* https://boingboing.net/2019/03/31/mote-in-cars-eye.html | * https://boingboing.net/2019/03/31/mote-in-cars-eye.html | ||
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf | ** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf | ||
+ | |||
+ | ===Another Attack Against Driverless Cars=== | ||
+ | |||
+ | <u>Schneier News:</u> | ||
+ | |||
+ | In this piece of research, attackers [https://arxiv.org/pdf/1906.09765.pdf successfully attack] a driverless car system -- Renault Captur's "Level 0" autopilot (Level 0 systems advise human drivers but do not directly operate cars) -- by following them with drones that project images of fake road signs in 100ms bursts. The time is too short for human perception, but long enough to fool the autopilot's sensors. | ||
+ | |||
+ | Boing Boing [https://boingboing.net/2019/07/06/flickering-car-ghosts.html post]. | ||
---- | ---- | ||
+ | |||
==on voice (ASR)== | ==on voice (ASR)== | ||
* https://www.the-ambient.com/features/weird-ways-echo-can-be-hacked-how-to-stop-it-231 | * https://www.the-ambient.com/features/weird-ways-echo-can-be-hacked-how-to-stop-it-231 | ||
Zeile 105: | Zeile 141: | ||
* https://github.com/bethgelab | * https://github.com/bethgelab | ||
* https://github.com/tensorflow/cleverhans | * https://github.com/tensorflow/cleverhans | ||
+ | |||
+ | ---- | ||
+ | =Detection through [https://exmediawiki.khm.de/exmediawiki/index.php?title=XAI_/_Language_Models
I XAI]= | ||
+ | |||
+ | When [https://exmediawiki.khm.de/exmediawiki/index.php?title=XAI_/_Language_Models
I Explainability] Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures: https://arxiv.org/pdf/1909.03418.pdf | ||
+ | |||
+ | Using [https://exmediawiki.khm.de/exmediawiki/index.php?title=XAI_/_Language_Models
I Explainabilty] to Detect Adversarial Attacks: https://openreview.net/pdf?id=B1xu6yStPH | ||
[[Category:Hacking]] | [[Category:Hacking]] |
Aktuelle Version vom 17. Dezember 2020, 16:43 Uhr
Blog von Francis Hunger und Flupke mit schönen beispielen...: http://adversarial.io/blog/allgemein/
https://github.com/shangtse/robust-physical-attack
https://github.com/ifding/adversarial-examples/blob/master/notebooks/adversarial.ipynb
https://arxiv.org/pdf/1712.09665.pdf
https://github.com/zentralwerkstatt/adversarial/blob/master/adversarial.ipynb
https://christophm.github.io/interpretable-ml-book/adversarial.html
https://b-ok.cc/book/5260920/fee7e3 < book: Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery
- A Complete List of All (arXiv) Adversarial Example Papers https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
- Praxis-Beispiele: https://boingboing.net/tag/adversarial-examples
- https://bdtechtalks.com/2018/12/27/deep-learning-adversarial-attacks-ai-malware/
- https://www.dailydot.com/debug/ai-malware/
Inhaltsverzeichnis
notes
https://github.com/tensorflow/cleverhans
WHITE BOX ATTACKS
- https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
- Paper »ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD«: https://arxiv.org/pdf/1607.02533.pdf
Untargeted Adversarial Attacks
Adversarial attacks that just want your model to be confused and predict a wrong class are called Untargeted Adversarial Attacks.
- nicht zielgerichtet
Fast Gradient Sign Method(FGSM)
FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).
- https://www.tensorflow.org/beta/tutorials/generative/adversarial_fgsm
- https://arxiv.org/pdf/1412.6572.pdf
Basic Iterative Method
Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden
Iterative Least-Likely Class Method
ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt
Targeted Adversarial Attacks
Attacks which compel the model to predict a (wrong) desired output are called Targeted Adversarial attacks
- zielgerichtet
(Un-)Targeted Adversarial Attacks
kann beides...
Projected Gradient Descent (PGD)
Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:
WHITE/BLACK BOX ATTACKS
on voice (ASR)
Psychoacoustic Hiding (Attacking Speech Recognition)
BLACK BOX ATTACKS
- https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8
- Jupyter Notebook: https://github.com/dangeng/Simple_Adversarial_Examples
on computer vision
propose zeroth order optimization (ZOO)
- attacks to directly estimate the gradients of the targeted DNN
Black-Box Attacks using Adversarial Samples
- a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack
new Tesla Hack
- https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
- https://boingboing.net/2019/03/31/mote-in-cars-eye.html
- Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
Another Attack Against Driverless Cars
Schneier News:
In this piece of research, attackers successfully attack a driverless car system -- Renault Captur's "Level 0" autopilot (Level 0 systems advise human drivers but do not directly operate cars) -- by following them with drones that project images of fake road signs in 100ms bursts. The time is too short for human perception, but long enough to fool the autopilot's sensors.
Boing Boing post.
on voice (ASR)
- https://www.theregister.co.uk/2016/07/11/siri_hacking_phones/
- https://www.fastcompany.com/90240975/alexa-can-be-hacked-by-chirping-birds
BLACK BOX / WHITE BOX ATTACKS
on voice (ASR)
Psychoacoustic Hiding (Attacking Speech Recognition)
on written text (NLP)
paraphrasing attacks
- https://venturebeat.com/2019/04/01/text-based-ai-models-are-vulnerable-to-paraphrasing-attacks-researchers-find/
- https://bdtechtalks.com/2019/04/02/ai-nlp-paraphrasing-adversarial-attacks/
Anti Surveillance
http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/
How to Disappear Completely
https://www.youtube.com/watch?v=LOulCAz4S0M talk by Lilly Ryan at linux.conf.au 2019 — Christchurch, New Zealand
libraries
Detection through XAI
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures: https://arxiv.org/pdf/1909.03418.pdf
Using Explainabilty to Detect Adversarial Attacks: https://openreview.net/pdf?id=B1xu6yStPH