C.heck: Unterschied zwischen den Versionen
Aus exmediawiki
C.heck (Diskussion | Beiträge) |
C.heck (Diskussion | Beiträge) |
||
(72 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | [[praktische Erinnerungskultur]] | + | <big>'''test- bzw. researchpages...: |
+ | ''' | ||
+ | </big> | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | [[Maschinelles Sprechen]] ||[[Per noMachine auf AI-Lab-Rechner zugreifen]] || [[Maschinelles Lernen]] || [[Maschinelles Lesen]] || [[Maschinelles Dichten]] | ||
+ | |- | ||
+ | | [[KHM-Wolke einrichten]] || [["...Sprache"]] || [[Vergleichsoperatoren]] || [[Perzeptron]] || [[Boole]] | ||
+ | |- | ||
+ | | [[Code Poetry]] || [[tesssts]] || [[AI@exLabIII]] || [[Einführung in die Programmierung Künstlicher Intelligenzen]] || [[Future Minds – Kritik Künstlicher Intelligenzen]] | ||
+ | |- | ||
+ | | [[Kommandozeilenreferenz]] || [[jutta-weber-kommentar]] || [[Die Kommandozeile]] || [[praktische Erinnerungskultur]] || [[Krieg & KI]] | ||
+ | |- | ||
+ | | [[das Codicht]] || [[machtkaputtwaseuchkaputtmachtstuktur]] || [https://pad.freifunk.net/p/W74NqM6ekDu01AsMK4Qu PAD-exp-inf.-talk@aula] || [https://pad.freifunk.net/p/newlinkski PAD-ki_research]|| [https://pad.freifunk.net/p/sdV7m6aeNV_-87gPO3qF PAD-booklist] | ||
+ | |- | ||
+ | | [https://pad.freifunk.net/p/d8jqQlhq2wzpPN5BFL-O PAD-wo-beginnt-der-krieg_abstract] || [[notes_rechnen mit lebenden systeme]] || [https://pad.freifunk.net/p/J63t2lAnTCC5yjjIoHYR seminar-notes] || [[AI on Rasp Pi]] || [[krieg-u-ki-test]] | ||
+ | |- | ||
+ | | [[Per Teamviewer auf AI-Lab-Rechner zugreifen]] || [[Kriegseinführung]] || [[Krieg-u-Ki-Archivseite]] || [[notes-poiesis_SS18]] || [[Poiesis and Pottery]] | ||
+ | |- | ||
+ | | [[RunwayML]] || [[ChatterBot]] || [[python-intro-brainstorming]] || [[TextBlob]] || [[sentiment analysis]] | ||
+ | |} | ||
− | [[ | + | [[KI-Newsletter 4]] |
− | [[ | + | --- |
+ | [[how to get your trainigdata]] | ||
+ | ---- | ||
+ | |||
+ | esolangs: | ||
+ | * [[Beatnik]] | ||
+ | |||
+ | ---- | ||
+ | |||
+ | [[Hacks]] | ||
+ | |||
+ | ---- | ||
+ | |||
+ | jupyter: | ||
+ | [[jupyter-extensions]] | ||
+ | |||
+ | [[KHM-Cloud]] | ||
+ | |||
+ | [[AI Dungeon]] | ||
+ | |||
+ | ---- | ||
+ | digitale poesie: | ||
+ | |||
+ | https://0x0a.li/de/ | ||
+ | https://poesiefestival.org/de/mediathek/digitale-poesie/ | ||
+ | |||
+ | dann die arbeiten von thurston, bajohr, morris, goldsmith etc... | ||
+ | |||
+ | https://de.wikipedia.org/wiki/Digitale_Poesie | ||
+ | |||
+ | ---- | ||
+ | |||
+ | [[testpage-pdfhandler]] | ||
+ | |||
+ | [[exmediawiki-editing]] | ||
+ | |||
+ | [[another-testpage]] | ||
+ | |||
+ | [[Big Blue Button]] | ||
− | |||
− | |||
− | |||
− | |||
=Keras Examples= | =Keras Examples= | ||
https://github.com/keras-team/keras/tree/master/examples | https://github.com/keras-team/keras/tree/master/examples | ||
Zeile 16: | Zeile 70: | ||
---- | ---- | ||
---- | ---- | ||
+ | |||
=ADVERSARIAL ATTACKS= | =ADVERSARIAL ATTACKS= | ||
KNN's sind extrem anfällig für... | KNN's sind extrem anfällig für... |
Aktuelle Version vom 19. Februar 2021, 22:14 Uhr
test- bzw. researchpages...:
--- how to get your trainigdata
esolangs:
jupyter: jupyter-extensions
digitale poesie:
https://0x0a.li/de/ https://poesiefestival.org/de/mediathek/digitale-poesie/
dann die arbeiten von thurston, bajohr, morris, goldsmith etc...
https://de.wikipedia.org/wiki/Digitale_Poesie
Inhaltsverzeichnis
- 1 Keras Examples
- 2 ADVERSARIAL ATTACKS
- 3 WHITE BOX ATTACKS
- 4 BLACK BOX ATTACKS
- 5 ETHICS
- 6 XAI
- 7 LANGUAGE
- 8 REPRODUKTIVE KI
Keras Examples
https://github.com/keras-team/keras/tree/master/examples
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf
ADVERSARIAL ATTACKS
KNN's sind extrem anfällig für...
- Praxis-Beispiele: https://boingboing.net/tag/adversarial-examples
- https://bdtechtalks.com/2018/12/27/deep-learning-adversarial-attacks-ai-malware/
- https://www.dailydot.com/debug/ai-malware/
WHITE BOX ATTACKS
- https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
- Paper »ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD«: https://arxiv.org/pdf/1607.02533.pdf
Untargeted Adversarial Attacks
Adversarial attacks that just want your model to be confused and predict a wrong class are called Untargeted Adversarial Attacks.
- nicht zielgerichtet
Fast Gradient Sign Method(FGSM)
FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).
Basic Iterative Method
Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden
Iterative Least-Likely Class Method
ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt
Targeted Adversarial Attacks
Attacks which compel the model to predict a (wrong) desired output are called Targeted Adversarial attacks
- zielgerichtet
(Un-)Targeted Adversarial Attacks
kann beides...
Projected Gradient Descent (PGD)
Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:
BLACK BOX ATTACKS
- https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8
- Jupyter Notebook: https://github.com/dangeng/Simple_Adversarial_Examples
on computer vision
propose zeroth order optimization (ZOO)
- attacks to directly estimate the gradients of the targeted DNN
Black-Box Attacks using Adversarial Samples
- a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack
new Tesla Hack
- https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
- https://boingboing.net/2019/03/31/mote-in-cars-eye.html
- Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
on voice (ASR)
- https://www.theregister.co.uk/2016/07/11/siri_hacking_phones/
- https://www.fastcompany.com/90240975/alexa-can-be-hacked-by-chirping-birds
Psychoacoustic Hiding (Attacking Speech Recognition)
on written text (NLP)
paraphrasing attacks
- https://venturebeat.com/2019/04/01/text-based-ai-models-are-vulnerable-to-paraphrasing-attacks-researchers-find/
- https://bdtechtalks.com/2019/04/02/ai-nlp-paraphrasing-adversarial-attacks/
Anti Surveillance
http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/
libraries
ETHICS
- https://www.economist.com/science-and-technology/2018/02/15/computer-programs-recognise-white-men-better-than-black-women
- https://books.google.de/books?id=rLsyDwAAQBAJ&pg=PA95&redir_esc=y#v=onepage&q&f=false
- https://books.google.de/books?id=_H1K3vojDFQC&pg=PA762&redir_esc=y#v=onepage&q&f=false
- https://neil.fraser.name/writing/tank/
- https://www.wired.com/story/why-ai-is-still-waiting-for-its-ethics-transplant/
- AI Now Report: https://medium.com/@AINowInstitute/the-10-top-recommendations-for-the-ai-field-in-2017-b3253624a7
- https://bdtechtalks.com/2018/03/26/racist-sexist-ai-deep-learning-algorithms/
- https://www.spiegel.de/netzwelt/web/facebook-foerdert-die-ki-forschung-an-der-tu-muenchen-gastbeitrag-a-1250796.html#ref=rss
XAI
- https://de.m.wikipedia.org/wiki/Explainable_Artificial_Intelligence
- https://netzpolitik.org/2018/enquete-kommission-kuenstliche-intelligenz-sachverstaendige-und-abgeordnete-klaeren-grundbegriffe/
- https://www.ayasdi.com/blog/artificial-intelligence/trust-challenge-explainable-ai-not-enough/
- https://www.bons.ai/blog/explainable-artificial-intelligence-using-model-induction
- https://en.m.wikipedia.org/wiki/Right_to_explanation
- https://bdtechtalks.com/2018/09/25/explainable-interpretable-ai/
- RISE: https://bdtechtalks.com/2018/10/15/kate-saenko-explainable-ai-deep-learning-rise/
- DARPA: https://www.darpa.mil/program/explainable-artificial-intelligence
Bedeutung:
- https://de.m.wikipedia.org/wiki/Bedeutung_(Sprachphilosophie)
- https://de.m.wikipedia.org/wiki/Philosophie_des_Geistes
- https://de.m.wikipedia.org/wiki/Mustererkennung
XAI durch Sprachrationalisierung
- https://de.wikipedia.org/wiki/Rationalismus
- Baumgarten ... << Rationalismus und Ästhetik
- sinnliche Erfahrung v.s. Wissen a priori << wo stehen wir hier mit der ästhetischen Erfahrung?
- https://www.kubi-online.de/artikel/aesthetische-erfahrung
- Baumgarten ... << Rationalismus und Ästhetik
- Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
LANGUAGE
Konstruierte, bzw. Künstliche Sprachen
- https://www.fatum-magazin.de/ausgaben/dialog/praefrontal/kunstsprachen.html
- https://de.wikipedia.org/wiki/Konstruierte_Sprache
- http://deacademic.com/dic.nsf/dewiki/441004
esoterische (KI) Programmiersprachen
- https://esolangs.org/w/index.php?search=neural&title=Special%3ASearch&profile=default&fulltext=1
- esoterische programmiersprachen http://kryptografie.de/kryptografie/chiffre/index-sprachen.htm
- Forscher suchen eigene Programmiersprache: https://t3n.de/news/machine-learning-facebooks-ki-chef-sucht-sprache-1144900/
Computer (und) Literatur
- p0es1s: http://www.p0es1s.net/p0es1s/intro_d.htm
- stochastische Texte: https://auer.netzliteratur.net/0_lutz/lutz_original.html
- Netzliteratur (Projekte): https://netzliteratur.net/netzliteratur_projekte_a.php
Florian Cramer:
- https://www.netzliteratur.net/cramer/poetische_kalkuele_und_phantasmen.pdf
- https://www.netzliteratur.net/cramer/wordsmadefleshpdf.pdf
KI und Literatur
AI-Poetry Examples...
- https://hackernoon.com/i-tried-my-hand-at-deep-learning-and-made-some-poetry-along-the-way-2e350c33376f
- https://www.japandigest.de/aktuelles/technologie-roboter/kunstliche-intelligenz-schreibt-haiku/
- https://bgr.com/2018/08/08/poetry-ai-bot-shakespeare-human-research/
- https://www.konstantext.de/index.php/item/sonnenblicke-auf-der-flucht-wenn-kuenstliche-intelligenz-ein-gedicht-schreibt
(KI-generierte) Krypto
- https://motherboard.vice.com/de/article/8q8wkv/google-ki-entwickelt-verschluesselung-die-selbst-google-nicht-versteht
- http://kryptografie.de/kryptografie/index.htm
NLU / NLI
- https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/natural-language-understanding-nlu.html
- https://en.wikipedia.org/wiki/Natural-language_understanding
NLP
Speech recognition
- https://de.wikipedia.org/wiki/Spracherkennung
- https://www.golem.de/news/deep-speech-0-2-mozillas-spracherkennung-wird-kleiner-und-kann-echtzeit-1809-136645.html
NLG
https://byteacademy.co/blog/overview-NLG
- https://de.wikipedia.org/wiki/Textgenerierung
- http://www.thealit.de/lab/serialitaet/teil/nieberle/nieberle.html
- Google: https://motherboard.vice.com/de/article/mg7md8/eine-kuenstliche-intelligenz-von-google-hat-gerade-seine-eigene-sprache-erfunden
- veröffentlichtes Paper: https://arxiv.org/pdf/1611.04558v1.pdf
- FB Bots: https://code.fb.com/ml-applications/deal-or-no-deal-training-ai-bots-to-negotiate/
(un-)supervised techniques
LSTM
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
LSTM+RNN
- »on the road« by AI: https://medium.com/artists-and-machine-intelligence/ai-poetry-hits-the-road-eb685dfc1544
Autoencoder
https://www.wired.co.uk/article/google-artificial-intelligence-poetry
LSTM+Autoencoder
- https://github.com/keras-team/keras/issues/1401
- https://www.dlology.com/blog/how-to-do-unsupervised-clustering-with-keras/
GAN
https://arxiv.org/abs/1705.10929
transformer-based language model
OpenAI's gpt-2:
Diskussion:
datenbanken
deutsch:
englisch:
E2E NLG Challenge:
chatbots
- https://bdtechtalks.com/2017/08/21/rob-high-ibm-watson-cto-artificial-intelligence-chatbots/
- https://chatbotsmagazine.com/contextual-chat-bots-with-tensorflow-4391749d0077
- Facebook-Messenger-Bot: https://dzone.com/articles/how-i-used-deep-learning-to-train-a-chatbot-to-tal
- https://tutorials.botsfloor.com/how-to-build-your-first-chatbot-c84495d4622d
- Jupyter Notebooks: https://github.com/suriyadeepan/practical_seq2seq
Toolkits/Librarys
- Natural Language Toolkit: http://www.nltk.org/
- Poetry Generator: https://github.com/schollz/poetry-generator
tryouts:
- https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
- https://remicnrd.github.io/Natural-language-generation/
- https://github.com/shashank-bhatt-07/Natural-Language-Generation-using-LSTM-Keras
REPRODUKTIVE KI
https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/