Aktionen

Maschinelles Lernen: Unterschied zwischen den Versionen

Aus exmediawiki

Zeile 19: Zeile 19:
 
----
 
----
 
=classify yourself=
 
=classify yourself=
 +
[[Datei: ChelseaManning-ProbablyChelsea.jpg|400px]]
  
 
<big>'''DNA phenotyping Workshop @ Open Lab'''</big>
 
<big>'''DNA phenotyping Workshop @ Open Lab'''</big>
Zeile 26: Zeile 27:
 
see: [[DNA_phenotyping]]
 
see: [[DNA_phenotyping]]
  
als Eingabedatenset für unser Perzeptron erstellen wir in diesem Workshop gemeinsam und experimentell Auszüge aus unserer jeweiligen DNA - unseren genetischen Fingerabdrucks.
+
als Eingabedatenset für unser Perzeptron erstellen wir in diesem Workshop u.a. gemeinsam und experimentell Auszüge aus unserer jeweiligen DNA - unseren genetischen Fingerabdruck.
  
 
=Wiederholung=
 
=Wiederholung=

Version vom 19. November 2019, 17:29 Uhr

14.11.2019



alle Notebooks findet ihr unter /exMedia_Machines/Seminar_Einführung-in-die-Programmierung-KI/:

exMedia_Machines/Seminar_Einführung-in-die-Programmierung-KI/05_14_11_maschinelles-lernen/?.ipynb

exMedia_Machines/Seminar_Einführung-in-die-Programmierung-KI/05_14_11_maschinelles-lernen/?.ipynb

exMedia_Machines/Seminar_Einführung-in-die-Programmierung-KI/05_14_11_maschinelles-lernen/?.ipynb

exMedia_Machines/Seminar_Einführung-in-die-Programmierung-KI/05_14_11_maschinelles-lernen/?.ipynb

exMedia_Machines/Seminar_Einführung-in-die-Programmierung-KI/05_14_11_maschinelles-lernen/?.ipynb

exMediawiki

kurze Einführung


classify yourself

ChelseaManning-ProbablyChelsea.jpg

DNA phenotyping Workshop @ Open Lab

am Freitag, den 13.12. zusammen mit Verena Friedrich, Klaus Fritze & Matthias Burba (Gast)

see: DNA_phenotyping

als Eingabedatenset für unser Perzeptron erstellen wir in diesem Workshop u.a. gemeinsam und experimentell Auszüge aus unserer jeweiligen DNA - unseren genetischen Fingerabdruck.

Wiederholung

Das Perzeptron

02 01.png Knn3.pngPerc2.png

Der lineare Klassifikator

boolean

Boole veröffentlichte 1854 "An investigation into the Laws of Thought" (Eine Untersuchung der Gesetze des Denkens).


Der britische Mathematiker hat die Gesetze der Logik formuliert, nach denen Computer, Smartphones, Datenbanken und eben auch Internet-Suchmaschinen funktionieren. Die Boole'sche Algebra gilt als das Fundament der modernen Informationstechnologie.

das bool'sche Entscheidungsverfahren:

  • Ein Entscheidungsverfahren ist ein Algorithmus, der für jedes Element der Menge beantworten kann, ob es die Eigenschaft hat oder nicht.

Knn1.pngBoolsche-logikfunktion.pngLogicGatesWorking.png << Claude Shannon

Logik << Schlußfolgerungslehre, Denklehre:

  • In der Logik wird die Struktur von Argumenten im Hinblick auf ihre Gültigkeit untersucht, unabhängig vom Inhalt der Aussagen.


formalisierte Logik:

  • „Formale Logik“ bezeichnet eine Notation von Schlüssen mittels einer formalen Sprache, die oftmals spezielle Symbole einführt. Dabei wird üblicherweise genau angegeben, wie wohlgeformte Ausdrücke dieser Sprache gebildet werden (Syntax).



Dieser Datentyp repräsentiert Wahrheitswerte aus der Menge True und False. Wahrheitswerte kann man mit Operatoren verknüpfen.

Wahrheitstabelle

Wir erlauben nur, dass die Eingabeneuronen binär aktiviert sein dürfen, sprich: es werden nur Aktivierungen von 1 oder 0 zugelassen.

Wir werden in diesem Semester Christian Lindner aktiv unterstützen und erstmal einen Klassifikator trainieren, der uns sagen wird, ob vor mir ein "EKI" in des Bäckers Schlange steht?

Dazu haben wir eine Merkmalsliste erstellt und fragen uns daraufhin, beispielsweise ob Die Person vor uns 1. männlich ist und zweitens eine Geldscheinklammer aus der Hosentasche zieht zum bezahlen eines 80 cent Betrages?

Wir nennen hierbei die beiden Spalten "X" und "Y" unsere Merkmale (engl. features), die wir als Eingabe verwenden, und "EKI" ist unser gesuchter Wert oder die gewünschte Ausgabe.

So gehen wir also einfach mal davon aus, dass wir eigentlich nicht so genau wissen, wie man einen EKI präzise definieren kann: wir haben uns nur diese 2 Merkmale (X und Y) zurechtgelegt um zum richtigen ergebnis zu kommen.

Später dann im Training werden wir auch wissen, was das erwartete bzw. richtige Ergebnis ist.

Danach wollen wir dann aber nur noch mit den Eingabe-Merkmalen zum Ziel kommen, ohne dass wir die Antwort schon im Voraus kennen. << Maschinelles Lernen

In der folgenden Tabelle sind logische Verknüpfungen zusammengefasst, wobei EKI und HGA in diesem Falle Bool'sche Variablen darstellen, die nur die Werte

  • 0 bzw. False

oder

  • 1 bzw. True

annehmen können:

Steht da ein Entwickler Künstlicher Intelligenz (EKI) vor mir in des Bäckers Schlange?
männlich Geldscheinklammer NOT AND OR XOR
False False True False False False
False True True False True True
True False False False True True
True True False True True False

?


Code Poetry

siehe: "...Sprache"

lineare Klassificodichte

Bitte Euer eigenes Klassificodicht hier eintragen: https://pad.freifunk.net/p/lineare-klassificodichte