Aktionen

Benutzer

C.heck: Unterschied zwischen den Versionen

Aus exmediawiki

Zeile 36: Zeile 36:
  
 
=BLACK BOX ATTACKS=
 
=BLACK BOX ATTACKS=
==(Un-)Targeted Adversarial Attacks==
+
 
kann beides...
 
 
* https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8
 
* https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8
 
** Jupyter Notebook: https://github.com/dangeng/Simple_Adversarial_Examples
 
** Jupyter Notebook: https://github.com/dangeng/Simple_Adversarial_Examples
 +
 +
==on computer vision==
 +
===propose zeroth order optimization (ZOO)===
 +
* attacks to directly estimate the gradients of the targeted DNN
 +
** https://arxiv.org/abs/1708.03999
 +
===Black-Box Attacks using Adversarial Samples===
 +
*  a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack
 +
** https://arxiv.org/abs/1605.07277
 +
===new Tesla Hack===
 +
* https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
 +
* https://boingboing.net/2019/03/31/mote-in-cars-eye.html
 +
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
 +
  
 
==on voice (ASR)==
 
==on voice (ASR)==
Zeile 58: Zeile 70:
  
 
* https://motherboard.vice.com/en_us/article/9axx5e/ai-can-be-fooled-with-one-misspelled-word
 
* https://motherboard.vice.com/en_us/article/9axx5e/ai-can-be-fooled-with-one-misspelled-word
 
==on computer vision==
 
===Tesla===
 
* https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
 
* https://boingboing.net/2019/03/31/mote-in-cars-eye.html
 
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
 
  
 
==Anti Surveillance==
 
==Anti Surveillance==

Version vom 16. April 2019, 12:41 Uhr

einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf

adversarial attacks

KNN's sind extrem anfällig für...

White Box Attacks

Untargeted Adversarial Attacks

Adversarial attacks that just want your model to be confused and predict a wrong class are called Untargeted Adversarial Attacks.

  • nicht zielgerichtet

Fast Gradient Sign Method(FGSM)

FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).

Basic Iterative Method

Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden

Iterative Least-Likely Class Method

ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt

Targeted Adversarial Attacks

Attacks which compel the model to predict a (wrong) desired output are called Targeted Adversarial attacks

  • zielgerichtet

(Un-)Targeted Adversarial Attacks

kann beides...

Projected Gradient Descent (PGD)

Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:

BLACK BOX ATTACKS

on computer vision

propose zeroth order optimization (ZOO)

Black-Box Attacks using Adversarial Samples

  • a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack

new Tesla Hack


on voice (ASR)

hidden voice commands

Psychoacoustic Hiding (Attacking Speech Recognition)

on written text (NLP)

paraphrasing attacks

Anti Surveillance

http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/

libraries

XAI

XAI/NLG

ethics

esotheric neural net

KI-generierte Sprache

NLP / NLG / NLU / NLI

NLP:

NLU:

NLG:

https://github.com/dangeng/Simple_Adversarial_Examples

Speech recognition

https://de.wikipedia.org/wiki/Spracherkennung

=datenbanken

deutsch:

englisch:

E2E NLG Challenge:

chatbots

Toolkits/Librarys

tryouts:

(KI-generierte) Krypto

Reproduktive KI

https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/

last semester

Datei:Neuronales-netz am eigenen-bild.ipynb