Aktionen

Benutzer

C.heck: Unterschied zwischen den Versionen

Aus exmediawiki

Zeile 1: Zeile 1:
  
 
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf  
 
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf  
=adversarial attacks=
+
=ADVERSARIAL ATTACKS=
 
KNN's sind extrem anfällig für...
 
KNN's sind extrem anfällig für...
  
Zeile 12: Zeile 12:
 
* https://en.wikipedia.org/wiki/Deep_learning#Cyberthreat
 
* https://en.wikipedia.org/wiki/Deep_learning#Cyberthreat
 
   
 
   
=White Box Attacks=
+
=WHITE BOX ATTACKS=
 
* https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
 
* https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
 
** Paper »ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD«: https://arxiv.org/pdf/1607.02533.pdf
 
** Paper »ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD«: https://arxiv.org/pdf/1607.02533.pdf
Zeile 51: Zeile 51:
 
* https://boingboing.net/2019/03/31/mote-in-cars-eye.html
 
* https://boingboing.net/2019/03/31/mote-in-cars-eye.html
 
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
 
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
 
  
 
==on voice (ASR)==
 
==on voice (ASR)==
Zeile 78: Zeile 77:
 
* https://github.com/tensorflow/cleverhans
 
* https://github.com/tensorflow/cleverhans
  
==XAI==
+
=XAI=
 
[[XAI/NLG]]
 
[[XAI/NLG]]
 
* https://de.m.wikipedia.org/wiki/Explainable_Artificial_Intelligence
 
* https://de.m.wikipedia.org/wiki/Explainable_Artificial_Intelligence
Zeile 89: Zeile 88:
 
* DARPA: https://www.darpa.mil/program/explainable-artificial-intelligence
 
* DARPA: https://www.darpa.mil/program/explainable-artificial-intelligence
  
==ethics==
+
=ethics=
 
* https://www.economist.com/science-and-technology/2018/02/15/computer-programs-recognise-white-men-better-than-black-women
 
* https://www.economist.com/science-and-technology/2018/02/15/computer-programs-recognise-white-men-better-than-black-women
 
* https://books.google.de/books?id=rLsyDwAAQBAJ&pg=PA95&redir_esc=y#v=onepage&q&f=false
 
* https://books.google.de/books?id=rLsyDwAAQBAJ&pg=PA95&redir_esc=y#v=onepage&q&f=false
Zeile 98: Zeile 97:
 
* https://bdtechtalks.com/2018/03/26/racist-sexist-ai-deep-learning-algorithms/
 
* https://bdtechtalks.com/2018/03/26/racist-sexist-ai-deep-learning-algorithms/
  
==esotheric neural net==
+
=LANGUAGE=
 +
==esotheric neural net (programming language)==
 
* Forscher suchen eigene Programmiersprache: https://t3n.de/news/machine-learning-facebooks-ki-chef-sucht-sprache-1144900/
 
* Forscher suchen eigene Programmiersprache: https://t3n.de/news/machine-learning-facebooks-ki-chef-sucht-sprache-1144900/
 
* esoterische programmiersprachen http://kryptografie.de/kryptografie/chiffre/index-sprachen.htm
 
* esoterische programmiersprachen http://kryptografie.de/kryptografie/chiffre/index-sprachen.htm
===KI-generierte Sprache===
 
* Google: https://motherboard.vice.com/de/article/mg7md8/eine-kuenstliche-intelligenz-von-google-hat-gerade-seine-eigene-sprache-erfunden
 
** veröffentlichtes Paper: https://arxiv.org/pdf/1611.04558v1.pdf
 
* FB Bots: https://code.fb.com/ml-applications/deal-or-no-deal-training-ai-bots-to-negotiate/
 
** https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it
 
===NLP / NLG / NLU / NLI===
 
  
NLP:
+
==NLU / NLI==
 +
* https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/natural-language-understanding-nlu.html
 +
* https://en.wikipedia.org/wiki/Natural-language_understanding
 +
 
 +
==NLP==
 
* https://de.wikipedia.org/wiki/Computerlinguistik
 
* https://de.wikipedia.org/wiki/Computerlinguistik
  
NLU:
+
===Speech recognition===
* https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/natural-language-understanding-nlu.html
+
https://de.wikipedia.org/wiki/Spracherkennung
* https://en.wikipedia.org/wiki/Natural-language_understanding
 
  
NLG:
+
==NLG==
 
* https://de.wikipedia.org/wiki/Textgenerierung
 
* https://de.wikipedia.org/wiki/Textgenerierung
 
* http://www.thealit.de/lab/serialitaet/teil/nieberle/nieberle.html
 
* http://www.thealit.de/lab/serialitaet/teil/nieberle/nieberle.html
  
https://github.com/dangeng/Simple_Adversarial_Examples
 
 
* https://bdtechtalks.com/2018/02/20/ai-machine-learning-nlg-nlp/
 
* https://bdtechtalks.com/2018/02/20/ai-machine-learning-nlg-nlp/
 
** https://www.wired.com/2016/03/google-inbox-auto-answers-emails/
 
** https://www.wired.com/2016/03/google-inbox-auto-answers-emails/
 
** http://www.wireless-earth.de/oldstuff/oldstuff.html
 
** http://www.wireless-earth.de/oldstuff/oldstuff.html
====Speech recognition====
 
https://de.wikipedia.org/wiki/Spracherkennung
 
  
====datenbanken===
+
* Google: https://motherboard.vice.com/de/article/mg7md8/eine-kuenstliche-intelligenz-von-google-hat-gerade-seine-eigene-sprache-erfunden
 +
** veröffentlichtes Paper: https://arxiv.org/pdf/1611.04558v1.pdf
 +
* FB Bots: https://code.fb.com/ml-applications/deal-or-no-deal-training-ai-bots-to-negotiate/
 +
** https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it
 +
 
 +
===datenbanken===
 
deutsch:
 
deutsch:
 
* https://de.wikipedia.org/wiki/GermaNet
 
* https://de.wikipedia.org/wiki/GermaNet
Zeile 137: Zeile 136:
 
* http://www.macs.hw.ac.uk/InteractionLab/E2E/
 
* http://www.macs.hw.ac.uk/InteractionLab/E2E/
  
====chatbots====
+
===chatbots===
 
* https://bdtechtalks.com/2017/08/21/rob-high-ibm-watson-cto-artificial-intelligence-chatbots/
 
* https://bdtechtalks.com/2017/08/21/rob-high-ibm-watson-cto-artificial-intelligence-chatbots/
 
* https://chatbotsmagazine.com/contextual-chat-bots-with-tensorflow-4391749d0077
 
* https://chatbotsmagazine.com/contextual-chat-bots-with-tensorflow-4391749d0077
Zeile 146: Zeile 145:
 
** Jupyter Notebooks: https://github.com/suriyadeepan/practical_seq2seq
 
** Jupyter Notebooks: https://github.com/suriyadeepan/practical_seq2seq
  
====Toolkits/Librarys====
+
===Toolkits/Librarys===
 
* Natural Language Toolkit: http://www.nltk.org/
 
* Natural Language Toolkit: http://www.nltk.org/
 
* Poetry Generator: https://github.com/schollz/poetry-generator
 
* Poetry Generator: https://github.com/schollz/poetry-generator
Zeile 154: Zeile 153:
 
* https://github.com/shashank-bhatt-07/Natural-Language-Generation-using-LSTM-Keras
 
* https://github.com/shashank-bhatt-07/Natural-Language-Generation-using-LSTM-Keras
  
===(KI-generierte) Krypto===
+
==(KI-generierte) Krypto==
 
* https://motherboard.vice.com/de/article/8q8wkv/google-ki-entwickelt-verschluesselung-die-selbst-google-nicht-versteht
 
* https://motherboard.vice.com/de/article/8q8wkv/google-ki-entwickelt-verschluesselung-die-selbst-google-nicht-versteht
 
* http://kryptografie.de/kryptografie/index.htm
 
* http://kryptografie.de/kryptografie/index.htm
===Reproduktive KI===
+
 
 +
==Reproduktive KI==
 
https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/
 
https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/
 
=last semester=
 
[[Datei:Neuronales-netz_am_eigenen-bild.ipynb]]
 

Version vom 16. April 2019, 12:50 Uhr

einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf

ADVERSARIAL ATTACKS

KNN's sind extrem anfällig für...

WHITE BOX ATTACKS

Untargeted Adversarial Attacks

Adversarial attacks that just want your model to be confused and predict a wrong class are called Untargeted Adversarial Attacks.

  • nicht zielgerichtet

Fast Gradient Sign Method(FGSM)

FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).

Basic Iterative Method

Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden

Iterative Least-Likely Class Method

ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt

Targeted Adversarial Attacks

Attacks which compel the model to predict a (wrong) desired output are called Targeted Adversarial attacks

  • zielgerichtet

(Un-)Targeted Adversarial Attacks

kann beides...

Projected Gradient Descent (PGD)

Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:

BLACK BOX ATTACKS

on computer vision

propose zeroth order optimization (ZOO)

Black-Box Attacks using Adversarial Samples

  • a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack

new Tesla Hack

on voice (ASR)

hidden voice commands

Psychoacoustic Hiding (Attacking Speech Recognition)

on written text (NLP)

paraphrasing attacks

Anti Surveillance

http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/

libraries

XAI

XAI/NLG

ethics

LANGUAGE

esotheric neural net (programming language)

NLU / NLI

NLP

Speech recognition

https://de.wikipedia.org/wiki/Spracherkennung

NLG

datenbanken

deutsch:

englisch:

E2E NLG Challenge:

chatbots

Toolkits/Librarys

tryouts:

(KI-generierte) Krypto

Reproduktive KI

https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/