Aktionen

Benutzer

C.heck: Unterschied zwischen den Versionen

Aus exmediawiki

Zeile 3: Zeile 3:
 
----
 
----
 
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf  
 
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf  
 +
 +
----
 
=ADVERSARIAL ATTACKS=
 
=ADVERSARIAL ATTACKS=
 
KNN's sind extrem anfällig für...
 
KNN's sind extrem anfällig für...
Zeile 13: Zeile 15:
  
 
* https://en.wikipedia.org/wiki/Deep_learning#Cyberthreat
 
* https://en.wikipedia.org/wiki/Deep_learning#Cyberthreat
+
 
 +
----
 
=WHITE BOX ATTACKS=
 
=WHITE BOX ATTACKS=
 
* https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
 
* https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
 
** Paper »ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD«: https://arxiv.org/pdf/1607.02533.pdf
 
** Paper »ADVERSARIAL EXAMPLES IN THE PHYSICAL WORLD«: https://arxiv.org/pdf/1607.02533.pdf
  
 +
----
 
==Untargeted Adversarial Attacks==
 
==Untargeted Adversarial Attacks==
 
Adversarial attacks that just want '''your model to be confused and predict a wrong class''' are called Untargeted Adversarial Attacks.
 
Adversarial attacks that just want '''your model to be confused and predict a wrong class''' are called Untargeted Adversarial Attacks.
Zeile 35: Zeile 39:
 
* zielgerichtet
 
* zielgerichtet
  
 +
----
 
==(Un-)Targeted Adversarial Attacks==
 
==(Un-)Targeted Adversarial Attacks==
 
kann beides...
 
kann beides...
Zeile 43: Zeile 48:
 
** Jupyter Notebook: https://github.com/oscarknagg/adversarial/blob/master/notebooks/Creating_And_Defending_From_Adversarial_Examples.ipynb
 
** Jupyter Notebook: https://github.com/oscarknagg/adversarial/blob/master/notebooks/Creating_And_Defending_From_Adversarial_Examples.ipynb
  
 +
----
 
=BLACK BOX ATTACKS=
 
=BLACK BOX ATTACKS=
  
Zeile 48: Zeile 54:
 
** Jupyter Notebook: https://github.com/dangeng/Simple_Adversarial_Examples
 
** Jupyter Notebook: https://github.com/dangeng/Simple_Adversarial_Examples
  
 +
----
 
==on computer vision==
 
==on computer vision==
  
Zeile 63: Zeile 70:
 
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
 
** Paper vom Forschungsteam: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
  
 +
----
 
==on voice (ASR)==
 
==on voice (ASR)==
 
* https://www.the-ambient.com/features/weird-ways-echo-can-be-hacked-how-to-stop-it-231
 
* https://www.the-ambient.com/features/weird-ways-echo-can-be-hacked-how-to-stop-it-231
Zeile 76: Zeile 84:
 
** Präsentationsfolien: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_08-2_Schonherr_slides.pdf
 
** Präsentationsfolien: https://www.ndss-symposium.org/wp-content/uploads/ndss2019_08-2_Schonherr_slides.pdf
  
 +
----
 
==on written text (NLP)==
 
==on written text (NLP)==
  
Zeile 84: Zeile 93:
 
* https://motherboard.vice.com/en_us/article/9axx5e/ai-can-be-fooled-with-one-misspelled-word
 
* https://motherboard.vice.com/en_us/article/9axx5e/ai-can-be-fooled-with-one-misspelled-word
  
 +
----
 
==Anti Surveillance==
 
==Anti Surveillance==
 
http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/
 
http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/
  
 +
----
 
==libraries==
 
==libraries==
 
* https://github.com/bethgelab
 
* https://github.com/bethgelab
 
* https://github.com/tensorflow/cleverhans
 
* https://github.com/tensorflow/cleverhans
  
 +
----
 
=ETHICS=
 
=ETHICS=
 
* https://www.economist.com/science-and-technology/2018/02/15/computer-programs-recognise-white-men-better-than-black-women
 
* https://www.economist.com/science-and-technology/2018/02/15/computer-programs-recognise-white-men-better-than-black-women
Zeile 101: Zeile 113:
 
* https://www.spiegel.de/netzwelt/web/facebook-foerdert-die-ki-forschung-an-der-tu-muenchen-gastbeitrag-a-1250796.html#ref=rss
 
* https://www.spiegel.de/netzwelt/web/facebook-foerdert-die-ki-forschung-an-der-tu-muenchen-gastbeitrag-a-1250796.html#ref=rss
  
 +
----
 
=XAI=
 
=XAI=
 
[[XAI/NLG]]
 
[[XAI/NLG]]
Zeile 129: Zeile 142:
 
** https://arxiv.org/abs/1702.07826
 
** https://arxiv.org/abs/1702.07826
  
 +
----
 
=LANGUAGE=
 
=LANGUAGE=
  
Zeile 144: Zeile 158:
 
* Forscher suchen eigene Programmiersprache: https://t3n.de/news/machine-learning-facebooks-ki-chef-sucht-sprache-1144900/
 
* Forscher suchen eigene Programmiersprache: https://t3n.de/news/machine-learning-facebooks-ki-chef-sucht-sprache-1144900/
  
==Computer und Literatur==
+
----
 +
==Computer (und) Literatur==
 
* p0es1s: http://www.p0es1s.net/p0es1s/intro_d.htm
 
* p0es1s: http://www.p0es1s.net/p0es1s/intro_d.htm
 
* stochastische Texte: https://auer.netzliteratur.net/0_lutz/lutz_original.html
 
* stochastische Texte: https://auer.netzliteratur.net/0_lutz/lutz_original.html
Zeile 153: Zeile 168:
 
* https://www.netzliteratur.net/cramer/wordsmadefleshpdf.pdf
 
* https://www.netzliteratur.net/cramer/wordsmadefleshpdf.pdf
  
 +
----
 
==KI und Literatur==
 
==KI und Literatur==
 
https://www.faz.net/aktuell/feuilleton/buecher/literatur-und-ki-vernunft-ist-auch-eine-herzenssache-16079038.html?printPagedArticle=true#void
 
https://www.faz.net/aktuell/feuilleton/buecher/literatur-und-ki-vernunft-ist-auch-eine-herzenssache-16079038.html?printPagedArticle=true#void
Zeile 162: Zeile 178:
 
* https://www.konstantext.de/index.php/item/sonnenblicke-auf-der-flucht-wenn-kuenstliche-intelligenz-ein-gedicht-schreibt
 
* https://www.konstantext.de/index.php/item/sonnenblicke-auf-der-flucht-wenn-kuenstliche-intelligenz-ein-gedicht-schreibt
  
 +
----
 
==(KI-generierte) Krypto==
 
==(KI-generierte) Krypto==
 
* https://motherboard.vice.com/de/article/8q8wkv/google-ki-entwickelt-verschluesselung-die-selbst-google-nicht-versteht
 
* https://motherboard.vice.com/de/article/8q8wkv/google-ki-entwickelt-verschluesselung-die-selbst-google-nicht-versteht
 
* http://kryptografie.de/kryptografie/index.htm
 
* http://kryptografie.de/kryptografie/index.htm
  
 +
----
 
==NLU / NLI==
 
==NLU / NLI==
 
* https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/natural-language-understanding-nlu.html
 
* https://www.informatik-aktuell.de/betrieb/kuenstliche-intelligenz/natural-language-understanding-nlu.html
 
* https://en.wikipedia.org/wiki/Natural-language_understanding
 
* https://en.wikipedia.org/wiki/Natural-language_understanding
  
 +
----
 
==NLP==
 
==NLP==
 
* https://de.wikipedia.org/wiki/Computerlinguistik
 
* https://de.wikipedia.org/wiki/Computerlinguistik
Zeile 176: Zeile 195:
 
https://de.wikipedia.org/wiki/Spracherkennung
 
https://de.wikipedia.org/wiki/Spracherkennung
  
 +
----
 
==NLG==
 
==NLG==
 
https://byteacademy.co/blog/overview-NLG
 
https://byteacademy.co/blog/overview-NLG
Zeile 191: Zeile 211:
 
** https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it
 
** https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it
  
 +
----
 
===(un-)supervised techniques===
 
===(un-)supervised techniques===
+
 
 
====LSTM====
 
====LSTM====
 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Zeile 217: Zeile 238:
 
* https://www.skynettoday.com/briefs/gpt2
 
* https://www.skynettoday.com/briefs/gpt2
  
 
+
----
 
===datenbanken===
 
===datenbanken===
 
deutsch:
 
deutsch:
Zeile 229: Zeile 250:
 
* http://www.macs.hw.ac.uk/InteractionLab/E2E/
 
* http://www.macs.hw.ac.uk/InteractionLab/E2E/
  
 +
----
 
===chatbots===
 
===chatbots===
 
* https://bdtechtalks.com/2017/08/21/rob-high-ibm-watson-cto-artificial-intelligence-chatbots/
 
* https://bdtechtalks.com/2017/08/21/rob-high-ibm-watson-cto-artificial-intelligence-chatbots/
Zeile 238: Zeile 260:
 
** Jupyter Notebooks: https://github.com/suriyadeepan/practical_seq2seq
 
** Jupyter Notebooks: https://github.com/suriyadeepan/practical_seq2seq
  
 +
----
 
===Toolkits/Librarys===
 
===Toolkits/Librarys===
 
* Natural Language Toolkit: http://www.nltk.org/
 
* Natural Language Toolkit: http://www.nltk.org/
Zeile 246: Zeile 269:
 
* https://github.com/shashank-bhatt-07/Natural-Language-Generation-using-LSTM-Keras
 
* https://github.com/shashank-bhatt-07/Natural-Language-Generation-using-LSTM-Keras
  
 +
----
 
=REPRODUKTIVE KI=
 
=REPRODUKTIVE KI=
 
https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/
 
https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/

Version vom 16. April 2019, 14:47 Uhr

Keras Examples

https://github.com/keras-team/keras/tree/master/examples


einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf


ADVERSARIAL ATTACKS

KNN's sind extrem anfällig für...


WHITE BOX ATTACKS


Untargeted Adversarial Attacks

Adversarial attacks that just want your model to be confused and predict a wrong class are called Untargeted Adversarial Attacks.

  • nicht zielgerichtet

Fast Gradient Sign Method(FGSM)

FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).

Basic Iterative Method

Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden

Iterative Least-Likely Class Method

ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt

Targeted Adversarial Attacks

Attacks which compel the model to predict a (wrong) desired output are called Targeted Adversarial attacks

  • zielgerichtet

(Un-)Targeted Adversarial Attacks

kann beides...

Projected Gradient Descent (PGD)

Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:


BLACK BOX ATTACKS


on computer vision

propose zeroth order optimization (ZOO)

Black-Box Attacks using Adversarial Samples

  • a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack

new Tesla Hack


on voice (ASR)

hidden voice commands

Psychoacoustic Hiding (Attacking Speech Recognition)


on written text (NLP)

paraphrasing attacks


Anti Surveillance

http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/


libraries


ETHICS


XAI

XAI/NLG


Bedeutung:



XAI durch Sprachrationalisierung


LANGUAGE

Konstruierte, bzw. Künstliche Sprachen

esoterische (KI) Programmiersprachen


Computer (und) Literatur

Florian Cramer:


KI und Literatur

https://www.faz.net/aktuell/feuilleton/buecher/literatur-und-ki-vernunft-ist-auch-eine-herzenssache-16079038.html?printPagedArticle=true#void

AI-Poetry Examples...


(KI-generierte) Krypto


NLU / NLI


NLP

Speech recognition

https://de.wikipedia.org/wiki/Spracherkennung


NLG

https://byteacademy.co/blog/overview-NLG


(un-)supervised techniques

LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM+RNN

Autoencoder

https://www.wired.co.uk/article/google-artificial-intelligence-poetry

LSTM+Autoencoder

GAN

https://arxiv.org/abs/1705.10929

transformer-based language model

OpenAI's gpt-2:

Diskussion:


datenbanken

deutsch:

englisch:

E2E NLG Challenge:


chatbots


Toolkits/Librarys

tryouts:


REPRODUKTIVE KI

https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/