Aktionen

Benutzerin

Verena: Unterschied zwischen den Versionen

Aus exmediawiki

Zeile 1: Zeile 1:
 
...
 
...
  
=KI-SEMINAR=
+
==Vorbereitungen WS 2019/20==
  
==Projektdokumentation==
 
  
===Kurzbeschreibung (EN)===
+
==KI-SEMINAR==
 +
 
 +
===Projektdokumentation===
 +
 
 +
====Kurzbeschreibung (EN)====
 
<br>
 
<br>
 
'''THE OFFICE (working title), 2019'''
 
'''THE OFFICE (working title), 2019'''
Zeile 26: Zeile 29:
 
neural networks
 
neural networks
  
===Hintergrund/Research===
+
====Hintergrund/Research====
  
  
====Projekte Pflanzen & KI====
+
=====Projekte Pflanzen & KI=====
  
 
* [https://www.aestheticsofexclusion.com/botanicavariegata Botanica Variegata (2019?) von Sjoerd Ter Borg]
 
* [https://www.aestheticsofexclusion.com/botanicavariegata Botanica Variegata (2019?) von Sjoerd Ter Borg]
  
====Projekte Environment & KI====
+
=====Projekte Environment & KI=====
  
 
* [http://harrischris.com/article/biophillic-vision-experiment-1 Biophillic Vision - Experiment 1: experimenting with machine learning to remove cars from video footage von Chris Harris]
 
* [http://harrischris.com/article/biophillic-vision-experiment-1 Biophillic Vision - Experiment 1: experimenting with machine learning to remove cars from video footage von Chris Harris]
  
===Technische Umsetzung/Vorgehensweise===
+
====Technische Umsetzung/Vorgehensweise====
  
====Erste Schritte====
+
=====Erste Schritte=====
  
 
* Convolutional Neural Networks for object detection (in videos)
 
* Convolutional Neural Networks for object detection (in videos)
Zeile 48: Zeile 51:
 
* Heartbeat Tutorial Part 2: [https://heartbeat.fritz.ai/analyze-and-visualize-detected-video-objects-using-keras-and-imageai-d84c99b0ae8e Analyze and Visualize Detected Video Objects Using Keras and ImageAI]
 
* Heartbeat Tutorial Part 2: [https://heartbeat.fritz.ai/analyze-and-visualize-detected-video-objects-using-keras-and-imageai-d84c99b0ae8e Analyze and Visualize Detected Video Objects Using Keras and ImageAI]
  
====Aktueller Stand====
+
=====Aktueller Stand=====
  
 
Working with the pretrained network
 
Working with the pretrained network
Zeile 75: Zeile 78:
 
* write this data into a csv file
 
* write this data into a csv file
  
====Preparation of training, test and validation data====
+
=====Preparation of training, test and validation data=====
  
  
Zeile 130: Zeile 133:
 
* plant_receptiontop (ca. 738 images)
 
* plant_receptiontop (ca. 738 images)
  
====Nächste Schritte====
+
=====Nächste Schritte=====
  
 
* train custom model based on collected images
 
* train custom model based on collected images
Zeile 140: Zeile 143:
 
* video post production (if neccessary)
 
* video post production (if neccessary)
  
===Code===
+
====Code====
  
==Links zum Thema KI==
+
===Links zum Thema KI===
  
 
* [https://www.nature.com/articles/d41586-019-01413-1?fbclid=IwAR3DD0D66JN5qjxGuH8YsvNPxKLJs_NXuNzrLaopJ1jtFgGk3TNa_rtcSKs Don’t let industry write the rules for AI]
 
* [https://www.nature.com/articles/d41586-019-01413-1?fbclid=IwAR3DD0D66JN5qjxGuH8YsvNPxKLJs_NXuNzrLaopJ1jtFgGk3TNa_rtcSKs Don’t let industry write the rules for AI]
 
* [https://www.wired.com/story/ai-text-generator-too-dangerous-to-make-public/?utm_brand=wired&utm_source=facebook&utm_social-type=owned&utm_medium=social&mbid=social_fb&utm_campaign=wired&fbclid=IwAR0cVyOvfT4uDVeO66zjlPHOXbuS8aGlDChgKSPOd1jT_16YJ492BRxeOS4 The AI Text Generator That's Too Dangerous to Make Public]
 
* [https://www.wired.com/story/ai-text-generator-too-dangerous-to-make-public/?utm_brand=wired&utm_source=facebook&utm_social-type=owned&utm_medium=social&mbid=social_fb&utm_campaign=wired&fbclid=IwAR0cVyOvfT4uDVeO66zjlPHOXbuS8aGlDChgKSPOd1jT_16YJ492BRxeOS4 The AI Text Generator That's Too Dangerous to Make Public]
  
===Evolutionary Algorithms===
+
====Evolutionary Algorithms====
 
* [https://www.technologyreview.com/s/611568/evolutionary-algorithm-outperforms-deep-learning-machines-at-video-games/?utm_medium=social&utm_source=facebook.com&utm_campaign=owned_social&fbclid=IwAR01pdD_uNn4tobm2tpdDRibCaigDfiJgmUG9DW6GR5u_ltmdvfdAol4esQ Evolutionary algorithm outperforms deep-learning machines at video games], MIT Technology Review, 06/2018
 
* [https://www.technologyreview.com/s/611568/evolutionary-algorithm-outperforms-deep-learning-machines-at-video-games/?utm_medium=social&utm_source=facebook.com&utm_campaign=owned_social&fbclid=IwAR01pdD_uNn4tobm2tpdDRibCaigDfiJgmUG9DW6GR5u_ltmdvfdAol4esQ Evolutionary algorithm outperforms deep-learning machines at video games], MIT Technology Review, 06/2018
  
==Code==
+
===Code===
  
  
=Other Research=
+
==Other Research==
  
==Teaching & Non-Teaching==
+
===Teaching & Non-Teaching===
 
* [https://medium.com/pi-top/meet-the-school-with-no-classes-no-classrooms-and-no-curriculum-7cc7be517cef?fbclid=IwAR34KmSoA7ER59npOAu2PyE6DAQDZ5IthTloXfqmOD3rtMdOmaPm_LEpOek Meet the school with no classes, no classrooms and no curriculum], Medium, 05/2019
 
* [https://medium.com/pi-top/meet-the-school-with-no-classes-no-classrooms-and-no-curriculum-7cc7be517cef?fbclid=IwAR34KmSoA7ER59npOAu2PyE6DAQDZ5IthTloXfqmOD3rtMdOmaPm_LEpOek Meet the school with no classes, no classrooms and no curriculum], Medium, 05/2019
  
  
<!-- unsichtbarer Kommentar   
+
<!-- unsichtbarer Kommentar  =BLOCKCHAIN READING GROUP notes=
=BLOCKCHAIN READING GROUP notes=
 
  
 
> seminar page: [[Blockchain Reading Group|Blockchain Reading Group]]
 
> seminar page: [[Blockchain Reading Group|Blockchain Reading Group]]

Version vom 23. September 2019, 15:50 Uhr

...

Vorbereitungen WS 2019/20

KI-SEMINAR

Projektdokumentation

Kurzbeschreibung (EN)


THE OFFICE (working title), 2019
Humans and plants live on different timescales. This is certainly one of the reasons why in everyday life, plants might often seem static and object-like to us. »The Office« (2019) makes use of existing video footage that covers large time spans, in this case, popular long-term tv shows. These productions showcase office and apartment interiors over a longer period of time, often also including houseplants which are mainly used for decorative purposes. Some of these series run over years or even decades and thus comprise many hours of footage. Convolutional neural networks are used as a tool to detect scenes involving houseplants while processing large quantities of the given video material. Selected scenes are compiled into a time-lapse movie which documents plant growth over a long period of time. While the lively movement and growth of the normally passively seeming plants becomes visible, the human activities become blurry and fade into the background.
Keywords: plants, plant-human-relationships, time, timescales, time-lapse, video, neural networks

Hintergrund/Research

Projekte Pflanzen & KI
Projekte Environment & KI

Technische Umsetzung/Vorgehensweise

Erste Schritte
Aktueller Stand

Working with the pretrained network

  • analyze video frame by frame (works for example with .mp4 and .m4v)
  • detect custom objects, in this case of the category "potted plant"
  • output a list called "detected frames" that for each frame in the video contains either a 0 or 1 to indicate whether a plant has or has not been detected in that frame. For example (for a video with 24 frames):

[0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]

  • transform this list into a numpy array
  • transform this array into another array called "changeArray" only indicates the positions where something changes in the array (if values jump from 0 to 1, or from 1 to 0 or in other words detect the beginning and end of the plant sequence
  • reshape array into an array called "changeArrayReshaped" with 2 columns with each row containing only the start and stop frame of the plant sequences

[[ 724 736]

[1716 1717]
[1734 1739]
[1742 1807]
[1809 1812]
[2073 2075]
[2077 2102]
[3260 3309]
[3344 3376]
[3416 3424]
[3497 3526]]

  • write this data into a csv file
Preparation of training, test and validation data
  • take last DVD from each season (the selected tv series comprises 9 seasons in total) and reserve it for generating the training, test and validation data (this material will not be used for the final analysis)
  • format of original material: .mp4; H.264; 720x406; 44100 Hz; 25fps; ...
  • convert all .mp4 files from last DVD to 15fps to reduce file size in regard to analysis (we probably do not need so many frames per second as images will be very similar)
  • analyze video files (see heartbeat tutorial) and output detected frames by custom objects detection ('potted plant') in the form of a csv file
  • use detected frames data in csv file to cut .mp4 files into multiple shorter files (sequences containing plants)
  • handsort all video sequences (.mp4 files) into subfolders, e.g.:


[ all_HANDSORTED_original ]
   [ plant_center ]
      [ TO_S2_15fps.mp4_sub_5.mp4 ]
      [ TO_S2_15fps.mp4_sub_6.mp4 ]
      [ TO_S2_15fps.mp4_sub_20.mp4 ]
      ...
   [ plant_chefofficefront ]
   [ plant_receptiontop ]
   ...
  • rename video files in subfolders with consecutive file names for batch processing


[ renamed_plant_center ]
   [ plant_center_1.mp4 ]
   [ plant_center_2.mp4 ]
   [ plant_center_3.mp4 ]
   ...
   [ plant_center_268.mp4 ]
[ renamed_plant_chefofficefront ]
[ renamed_plant_receptiontop ]
...
  • batch processing: convert all video files in plant-specific subfolders to images(.jpg)
  • rename again into images with consecutive numbers


[ plant_center_images_toCrop_renamed ]
   [ plant_center_1.jpg ] 
   [ plant_center_2.jpg ] 
   [ plant_center_3.jpg ] 
   ...
   [ plant_center_2186.jpg ]
  • analyze single images (jpgs) with code based on (adapted) imageAi tutorial "Object Detection with 10 lines of code.ipynb"
  • per batch processed image: output box points info of detected plant and, within each loop, crop image according to box points and save in newly created folder

Cropped images final output:

  • plant_center (ca. 2200 images)
  • plant_chefofficefront(ca. 1300 images)
  • plant_conferencefront (ca. 600 images)
  • plant_conferenceinside (ca. 300 images)
  • plant_receptiontop (ca. 738 images)
Nächste Schritte
  • train custom model based on collected images
  • collecting and processing larger quantities of suitable video material
  • further automatizing the process of preselecting plant scenes, splitting the

detected plants into different classes, and making a new cut based on these classes in order to generate visually coherent video material

  • final selection of interesting output movies for presentation purposes
  • video post production (if neccessary)

Code

Links zum Thema KI

Evolutionary Algorithms

Code

Other Research

Teaching & Non-Teaching