Aktionen

Benutzer

C.heck: Unterschied zwischen den Versionen

Aus exmediawiki

Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
 
=Keras Examples=
https://github.com/keras-team/keras/tree/master/examples
----
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf  
einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf  
=ADVERSARIAL ATTACKS=
=ADVERSARIAL ATTACKS=
Zeile 19: Zeile 21:
Adversarial attacks that just want '''your model to be confused and predict a wrong class''' are called Untargeted Adversarial Attacks.
Adversarial attacks that just want '''your model to be confused and predict a wrong class''' are called Untargeted Adversarial Attacks.
* nicht zielgerichtet
* nicht zielgerichtet
===Fast Gradient Sign Method(FGSM)===
===Fast Gradient Sign Method(FGSM)===
FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).
FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).
===Basic Iterative Method===
===Basic Iterative Method===
Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden
Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden
===Iterative Least-Likely Class Method===
===Iterative Least-Likely Class Method===
ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt
ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt
==Targeted Adversarial Attacks==
==Targeted Adversarial Attacks==
Attacks which compel the model to predict a '''(wrong) desired output''' are called Targeted Adversarial attacks
Attacks which compel the model to predict a '''(wrong) desired output''' are called Targeted Adversarial attacks
* zielgerichtet
* zielgerichtet
==(Un-)Targeted Adversarial Attacks==
==(Un-)Targeted Adversarial Attacks==
kann beides...
kann beides...
===Projected Gradient Descent (PGD)===
===Projected Gradient Descent (PGD)===
Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:
Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:
Zeile 41: Zeile 49:


==on computer vision==
==on computer vision==
===propose zeroth order optimization (ZOO)===
===propose zeroth order optimization (ZOO)===
* attacks to directly estimate the gradients of the targeted DNN
* attacks to directly estimate the gradients of the targeted DNN
** https://arxiv.org/abs/1708.03999
** https://arxiv.org/abs/1708.03999
===Black-Box Attacks using Adversarial Samples===
===Black-Box Attacks using Adversarial Samples===
*  a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack
*  a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack
** https://arxiv.org/abs/1605.07277
** https://arxiv.org/abs/1605.07277
===new Tesla Hack===
===new Tesla Hack===
* https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
* https://spectrum.ieee.org/cars-that-think/transportation/self-driving/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
Zeile 54: Zeile 65:
==on voice (ASR)==
==on voice (ASR)==
* https://www.the-ambient.com/features/weird-ways-echo-can-be-hacked-how-to-stop-it-231
* https://www.the-ambient.com/features/weird-ways-echo-can-be-hacked-how-to-stop-it-231
===hidden voice commands===
===hidden voice commands===
* https://www.theregister.co.uk/2016/07/11/siri_hacking_phones/
* https://www.theregister.co.uk/2016/07/11/siri_hacking_phones/
* https://www.fastcompany.com/90240975/alexa-can-be-hacked-by-chirping-birds
* https://www.fastcompany.com/90240975/alexa-can-be-hacked-by-chirping-birds
===Psychoacoustic Hiding (Attacking Speech Recognition)===
===Psychoacoustic Hiding (Attacking Speech Recognition)===
* https://adversarial-attacks.net/
* https://adversarial-attacks.net/
Zeile 64: Zeile 77:


==on written text (NLP)==
==on written text (NLP)==
===paraphrasing attacks===
===paraphrasing attacks===
* https://venturebeat.com/2019/04/01/text-based-ai-models-are-vulnerable-to-paraphrasing-attacks-researchers-find/
* https://venturebeat.com/2019/04/01/text-based-ai-models-are-vulnerable-to-paraphrasing-attacks-researchers-find/
Zeile 113: Zeile 127:


==NLG==
==NLG==
https://byteacademy.co/blog/overview-NLG
'''XAI durch Sprachrationalisierung'''
* Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
** https://arxiv.org/abs/1702.07826
* https://de.wikipedia.org/wiki/Textgenerierung
* https://de.wikipedia.org/wiki/Textgenerierung
* http://www.thealit.de/lab/serialitaet/teil/nieberle/nieberle.html
* http://www.thealit.de/lab/serialitaet/teil/nieberle/nieberle.html
Zeile 125: Zeile 145:
** https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it
** https://www.fastcompany.com/90132632/ai-is-inventing-its-own-perfect-languages-should-we-let-it


===techniques===
===(un-)supervised===
====LSTM+RNN===
====LSTM====
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 
====LSTM+RNN====
* »on the road« by AI: https://medium.com/artists-and-machine-intelligence/ai-poetry-hits-the-road-eb685dfc1544
* »on the road« by AI: https://medium.com/artists-and-machine-intelligence/ai-poetry-hits-the-road-eb685dfc1544
====Autoencoders====
 
====Autoencoder====
https://www.wired.co.uk/article/google-artificial-intelligence-poetry
https://www.wired.co.uk/article/google-artificial-intelligence-poetry
====LSTM+Autoencoder====
* https://github.com/keras-team/keras/issues/1401
* https://www.dlology.com/blog/how-to-do-unsupervised-clustering-with-keras/
====GAN====
====GAN====
====Transformations====
https://arxiv.org/abs/1705.10929
 
====transformer-based language model====
OpenAI's gpt-2:
* https://openai.com/blog/better-language-models/
** https://github.com/openai/gpt-2
 
Diskussion:
* https://www.skynettoday.com/briefs/gpt2


===Poetry===
===Poetry===
====examples...====
====examples...====
* https://hackernoon.com/i-tried-my-hand-at-deep-learning-and-made-some-poetry-along-the-way-2e350c33376f
* https://hackernoon.com/i-tried-my-hand-at-deep-learning-and-made-some-poetry-along-the-way-2e350c33376f

Version vom 16. April 2019, 14:07 Uhr

Keras Examples

https://github.com/keras-team/keras/tree/master/examples


einfaches perceptron (schöne skizzen): https://github.com/nature-of-code/NOC-S17-2-Intelligence-Learning/blob/master/week4-neural-networks/perceptron.pdf

ADVERSARIAL ATTACKS

KNN's sind extrem anfällig für...

WHITE BOX ATTACKS

Untargeted Adversarial Attacks

Adversarial attacks that just want your model to be confused and predict a wrong class are called Untargeted Adversarial Attacks.

  • nicht zielgerichtet

Fast Gradient Sign Method(FGSM)

FGSM is a single step attack, ie.. the perturbation is added in a single step instead of adding it over a loop (Iterative attack).

Basic Iterative Method

Störung, anstatt in einem einzelnen Schritt in mehrere kleinen Schrittgrößen anwenden

Iterative Least-Likely Class Method

ein Bild erstellen, welches in der Vorhersage den niedrigsten Score trägt

Targeted Adversarial Attacks

Attacks which compel the model to predict a (wrong) desired output are called Targeted Adversarial attacks

  • zielgerichtet

(Un-)Targeted Adversarial Attacks

kann beides...

Projected Gradient Descent (PGD)

Eine Störung finden die den Verlust eines Modells bei einer bestimmten Eingabe maximiert:

BLACK BOX ATTACKS

on computer vision

propose zeroth order optimization (ZOO)

Black-Box Attacks using Adversarial Samples

  • a technique that uses the victim model as an oracle to label a synthetic training set for the substitute, so the attacker need not even collect a training set to mount the attack

new Tesla Hack

on voice (ASR)

hidden voice commands

Psychoacoustic Hiding (Attacking Speech Recognition)

on written text (NLP)

paraphrasing attacks

Anti Surveillance

http://dismagazine.com/dystopia/evolved-lifestyles/8115/anti-surveillance-how-to-hide-from-machines/

libraries

ETHIK

XAI

XAI/NLG

LANGUAGE

esotheric neural net (programming language)

NLU / NLI

NLP

Speech recognition

https://de.wikipedia.org/wiki/Spracherkennung

NLG

https://byteacademy.co/blog/overview-NLG

XAI durch Sprachrationalisierung

(un-)supervised

LSTM

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM+RNN

Autoencoder

https://www.wired.co.uk/article/google-artificial-intelligence-poetry

LSTM+Autoencoder

GAN

https://arxiv.org/abs/1705.10929

transformer-based language model

OpenAI's gpt-2:

Diskussion:

Poetry

examples...

datenbanken

deutsch:

englisch:

E2E NLG Challenge:

chatbots

Toolkits/Librarys

tryouts:

(KI-GENERIERTE) KRYPTO

REPRODUKTIVE KI

https://www.sir-apfelot.de/kuenstliche-intelligenz-erschafft-neue-ki-systeme-10436/